## PS710E-1A,PS710EL-1A

## 6-PIN DIP, $0.08 \Omega$ LOW ON-STATE RESISTANCE 2.0 A CONTINUOUS LOAD CURRENT 1-ch Optical Coupled MOS FET <br> -NEPOC Series-

## DESCRIPTION

The PS710E-1A and PS710EL-1A are solid state relays containing a GaAs LED on the input side and MOS FETs on the output side.

It is suitable for PLC, etc. because of its large continuous load current and low on-state resistance.
The PS710EL-1A has a surface mount type lead.

## FEATURES

- Low on-state resistance (Ron $=0.08 \Omega$ TYP.)
- Large continuous load current (IL = 2.0 A)
- 1 channel type (1 a output)
- Low LED operating current ( $\mathrm{IF}=2 \mathrm{~mA}$ )
- Designed for AC/DC switching line changer
- Small package (6-pin DIP)
- Low offset voltage
- PS710EL-1A: Surface mount type


## APPLICATIONS

- Measurement equipment
- FA equipment


## PACKAGE DIMENSIONS (UNIT: mm)

PS710E-1A


PS710EL-1A


MARKING EXAMPLE


ORDERING INFORMATION (Solder Contains Lead)

| Part Number | Package | Packing Style | Application Part Number ${ }^{* 1}$ |
| :---: | :---: | :---: | :---: |
| PS710E-1A | 6-pin DIP | Magazine case 50 pcs | PS710E-1A |
| PS710EL-1A |  |  | PS710EL-1A |
| PS710EL-1A-E3 |  | Embossed tape $1000 \mathrm{pcs} / \mathrm{reel}$ |  |
| PS710EL-1A-E4 |  |  |  |

*1 For the application of the Safety Standard, following part number should be used.

## ORDERING INFORMATION (Pb-Free)

| Part Number | Package | Packing Style | Application Part Number* ${ }^{*}$ |
| :---: | :---: | :---: | :---: |
| PS710E-1A-A | 6-pin DIP | Magazine case 50 pcs | PS710E-1A |
| PS710EL-1A-A |  |  | PS710EL-1A |
| PS710EL-1A-E3-A |  | Embossed tape $1000 \mathrm{pcs} / \mathrm{reel}$ |  |
| PS710EL-1A-E4-A |  |  |  |

*1 For the application of the Safety Standard, following part number should be used.

ABSOLUTE MAXIMUM RATINGS ( $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$, unless otherwise specified)

| Parameter |  |  | Symbol | Ratings | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Diode | Forward Current (DC) |  | IF | 50 | mA |
|  | Reverse Voltage |  | $V_{\text {R }}$ | 5.0 | V |
|  | Power Dissipation |  | PD | 50 | mW |
|  | Peak Forward Current ${ }^{\text {* }}$ |  | Ifp | 1 | A |
| MOS FET | Load Voltage |  | V | 80 | V |
|  | Continuous Load Current ${ }^{*}$ | Connection A | IL | 2.0 | A |
|  |  | Connection B |  | 3.0 |  |
|  |  | Connection C |  | 4.0 |  |
|  | Pulse Load Current ${ }^{\text {3 }}$ <br> (AC/DC Connection) |  | ILP | 4.0 | A |
|  | Power Dissipation |  | PD | 600 | mW |
| Isolation Voltage ${ }^{* 4}$ |  |  | BV | 1500 | Vr.m.s. |
| Total Power Dissipation |  |  | $\mathrm{P}_{\text {T }}$ | 650 | mW |
| Operating Ambient Temperature |  |  | $\mathrm{T}_{\mathrm{A}}$ | -40 to +85 | ${ }^{\circ} \mathrm{C}$ |
| Storage Temperature |  |  | $\mathrm{T}_{\text {stg }}$ | -40 to +100 | ${ }^{\circ} \mathrm{C}$ |

*1 PW = $100 \mu \mathrm{~S}$, Duty Cycle = $1 \%$
*2 Conditions: If $\geq 2 \mathrm{~mA}$. The following types of load connections are available.

Connection A

*3 PW = 100 ms , 1 shot
*4 AC voltage for 1 minute at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{RH}=60 \%$ between input and output

RECOMMENDED OPERATING CONDITIONS ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ )

| Parameter | Symbol | MIN. | TYP. | MAX. | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: |
| LED Operating Current | $\mathrm{I}_{\mathrm{F}}$ | 2 | 10 | 20 | mA |
| LED Off Voltage | $\mathrm{V}_{\mathrm{F}}$ | 0 |  | 0.5 | V |

## ELECTRICAL CHARACTERISTICS ( $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ )

| Parameter |  | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Diode | Forward Voltage | $V_{F}$ | $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ |  | 1.2 | 1.4 | V |
|  | Reverse Current | IR | $\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$ |  |  | 5.0 | $\mu \mathrm{A}$ |
| MOS FET | Off-state Leakage Current | ILoff | $\mathrm{V}_{\mathrm{D}}=80 \mathrm{~V}$ |  |  | 50 | nA |
|  | Output Capacitance | Cout | $\mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ |  | 480 |  | pF |
| Coupled | LED On-state Current | Ifon | $\mathrm{IL}=2.0 \mathrm{~A}$ |  |  | 2.0 | mA |
|  | On-state Resistance | Ron | $\mathrm{IF}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{2}=2.0 \mathrm{~A}, \mathrm{t} \leq 10 \mathrm{~ms}$ |  | 0.083 | 0.15 | $\Omega$ |
|  | Turn-on Time ${ }^{{ }^{\text {1,2 }} 2}$ | ton | $\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{o}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega, \\ & \mathrm{PW} \geq 10 \mathrm{~ms} \end{aligned}$ |  | 1.0 | 2.0 | ms |
|  | Turn-off Time ${ }^{* 1,2}$ | toff |  |  | 0.02 | 0.2 |  |
|  | Isolation Resistance | Rı-o | $\mathrm{V}_{\text {I-O }}=1.0 \mathrm{kV}$ dc | $10^{9}$ |  |  | $\Omega$ |
|  | Isolation Capacitance | Cı-o | $\mathrm{V}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ |  | 0.5 |  | pF |

*1 Test Circuit for Switching Time

*2 The turn-on time and turn-off time are specified as input-pulse width $\geq 10 \mathrm{~ms}$.
Be aware that when the device operates with an input-pulse width of under 10 ms , the turn-on time and turn-off time will increase.

TYPICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$, unless otherwise specified)


FORWARD VOLTAGE vs. AMBIENT TEMPERATURE


OFF-STATE LEAKAGE CURRENT vs. AMBIENT TEMPERATURE


MAXIMUM LOAD CURRENT vs. AMBIENT TEMPERATURE


OUTPUT CAPACITANCE vs. APPLIED VOLTAGE



Load Voltage $\mathrm{V}_{\mathrm{L}}(\mathrm{V})$

NORMALIZED ON-STATE RESISTANCE vs. AMBIENT TEMPERATURE


TURN-ON TIME vs. FORWARD CURRENT


TURN-ON TIME DISTRIBUTION


ON-STATE RESISTANCE DISTRIBUTION


TURN-OFF TIME vs. FORWARD CURRENT


TURN-OFF TIME DISTRIBUTION



NORMALIZED TURN-OFF TIME vs. AMBIENT TEMPERATURE


Remark The graphs indicate nominal characteristics.

## TAPING SPECIFICATIONS (UNIT: mm)

## Outline and Dimensions (Tape)



## Tape Direction



Outline and Dimensions (Reel)


Packing: 1000 pcs/reel


## RECOMMENDED SOLDERING CONDITIONS

(1) Infrared reflow soldering

- Peak reflow temperature
- Time of peak reflow temperature
- Time of temperature higher than $220^{\circ} \mathrm{C}$
- Time to preheat temperature from 120 to $180^{\circ} \mathrm{C}$
- Number of reflows
$260^{\circ} \mathrm{C}$ or below (package surface temperature)
10 seconds or less
60 seconds or less
$120 \pm 30 \mathrm{~s}$
Three
Rosin flux containing small amount of chlorine (The flux with a maximum chlorine content of $0.2 \mathrm{Wt} \%$ is recommended.)

Recommended Temperature Profile of Infrared Reflow


## (2) Wave soldering

- Temperature
- Time
- Preheating conditions
- Number of times
- Flux
$260^{\circ} \mathrm{C}$ or below (molten solder temperature)
10 seconds or less
$120^{\circ} \mathrm{C}$ or below (package surface temperature)
One
Rosin flux containing small amount of chlorine (The flux with a maximum chlorine content of $0.2 \mathrm{Wt} \%$ is recommended.)


## (3) Cautions

- Fluxes

Avoid removing the residual flux with freon-based and chlorine-based cleaning solvent.

## Subject: Compliance with EU Directives

CEL certifies, to its knowledge, that semiconductor and laser products detailed below are compliant with the requirements of European Union (EU) Directive 2002/95/EC Restriction on Use of Hazardous Substances in electrical and electronic equipment (RoHS) and the requirements of EU Directive 2003/11/EC Restriction on Penta and Octa BDE.

CEL Pb-free products have the same base part number with a suffix added. The suffix -A indicates that the device is Pb -free. The -AZ suffix is used to designate devices containing Pb which are exempted from the requirement of RoHS directive (*). In all cases the devices have Pb-free terminals. All devices with these suffixes meet the requirements of the RoHS directive.

This status is based on CEL's understanding of the EU Directives and knowledge of the materials that go into its products as of the date of disclosure of this information.

| Restricted Substance <br> per RoHS | Concentration Limit per RoHS <br> (values are not yet fixed) | Concentration contained <br> in CEL devices |  |
| :--- | :---: | :---: | :---: |
| Lead $(\mathrm{Pb})$ | $<1000$ PPM | -A | -AZ |
| Mercury | $<1000$ PPM | Not Detected | (*) |
| Cadmium | $<100$ PPM | Not Detected |  |
| Hexavalent Chromium | $<1000$ PPM | Not Detected |  |
| PBB | $<1000$ PPM | Not Detected |  |
| PBDE | $<1000$ PPM | Not Detected |  |

If you should have any additional questions regarding our devices and compliance to environmental standards, please do not hesitate to contact your local representative.

Important Information and Disclaimer: Information provided by CEL on its website or in other communications concerting the substance content of its products represents knowledge and belief as of the date that it is provided. CEL bases its knowledge and belief on information provided by third parties and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. CEL has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. CEL and CEL suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall CEL's liability arising out of such information exceed the total purchase price of the CEL part(s) at issue sold by CEL to customer on an annual basis.
See CEL Terms and Conditions for additional clarification of warranties and liability.

